Органы печати: как с помощью 3D-принтера делают уши, кожу и носы

Органы печати: как с помощью 3D-принтера делают уши, кожу и носы

Правообладатель иллюстрации
Masela family archive

Image caption

Люк Масела с родителями через месяц после операции по пересадке искусственного мочевого пузыря. 2001 год.

Люку Масела сейчас 27 — он спортсмен с дипломом по экономике, работает в крупной выставочной компании, много путешествует и недавно встретил, по его словам, «самую красивую девушку на свете». И она, и большинство его нынешних друзей были крайне удивлены, когда узнали, что 17 лет назад он пережил полтора десятка операций.

Люк родился с расщеплением позвоночника — и хотя он смог начать ходить, его мочевой пузырь был сильно поврежден. К 10 годам он почти не выходил из больниц: из-за неправильной работы мочевого пузыря в почки мальчика стала возвращаться жидкость, врачи диагностировали необратимую патологию органа.

Media playback is unsupported on your device

«Напечатанные» на 3D-принтере органы уже здесь

Врачи предлагали семье два решения: пожизненный диализ или создание нового мочевого пузыря из сегмента кишки. Это гарантировало бы Люку несколько лет жизни под медицинским присмотром и высокий риск развития рака.

Уролог, который вел мальчика, предложил семье Масела принять участие в экспериментальной программе: вырастить новый мочевой пузырь из его же собственных клеток. Тогда, в 2001 году, это звучало как научная фантастика: в самой программе до Люка приняли участие всего девять человек. Несмотря на это, его семья согласилась.

«Суть операции сводилась к двум этапам: сначала у меня взяли кусочек ткани мочевого пузыря и в течение двух последующих месяцев в лаборатории растили клетки, чтобы из них вырастить новый здоровый пузырь», — рассказывает Люк.

Правообладатель иллюстрации
Masela family archive

Image caption

Люк Масела через 17 лет после операции по пересадке искусственного мочевого пузыря

Дальше была операция по пересадке, которая, по его словам, длилась 16 часов. «Я открыл глаза и увидел разрез через весь мой живот, из меня торчали трубки всех возможных размеров, кроме них — четыре капельницы и аппарат искусственного вскармливания, — вспоминает он. — Я оставался в больнице еще месяц, мне был прописан постельный режим, после этого я еще месяц лежал дома».

Операцию делал доктор Энтони Атала — детский регенеративный хирург. За два месяца из ста клеток пациента ученые создали полтора миллиарда. Дальше на каркасе из коллагена была создана инженерная конструкция: мочевой пузырь «лепили», как двухслойный пирог, сердцевина которого со временем растворилась, и он заработал, как обычный орган, прижившись благодаря клеткам самого Люка.

  • Животное, способное заново отрастить голову
  • Рождение химеры: зачем ученым гибрид человека и животного?
  • Шведская компания печатает части тела на 3D-принтере

После выписки из больницы Люк и доктор Атала не виделись 10 лет . Когда-то умирающий ребенок стал чемпионом школьной команды по вольной борьбе и поступил в колледж.

Профессор за эти 10 лет возглавил институт регенеративной медицины Wake Forest в Северной Каролине, но о Люке он не забывал ни на минуту: его мочевой пузырь был одним из самых сложных и самых успешных проектов в его ранней практике .

К 2018 году Атала стал лауреатом премии Кристофора Колумба — за «работу над открытием, которое окажет существенное влияние на общество»; журналы Times и Scientific American в разное время называли его «врачом года», он также был признан «одним из 50 ученых планеты, которые в ближайшие 10 лет изменят наш образ жизни и работы».

Как напечатать новое лицо

В середине 2000-х годов команда Аталы обратила внимание на обыкновенный бытовой 3D-принтер и написала для него специальное программное обеспечение, позднее для лаборатории были созданы специализированные машины. Теперь в лаборатории «выращивают» до 30 различных видов клеток и органов, а также хрящи и кости.

Одни из последних достижений команды — уши и носы, выращенные вне тела человека.

Главный заказчик и спонсор разработок Аталы — американское министерство обороны, а многие пациенты — военные, пострадавшие в результате боевых действий.

Работает это так: сперва делается компьютерная томография уха или носа. Один из ассистентов Аталы, Джошуа Корпус, шутит: на этом этапе люди нередко просят «улучшить» форму носа, если свой им казался слишком широким или крючковатым, и ушей, если те были уж очень развесисты.

После этого пишется специальный компьютерный код, и начинается печать основы органов.

Для этого используется саморассасывающийся полимер — поликапролактам. Одновременно и гибкий, и прочный, в теле человека он распадается в течение четырех лет.

После печати слои поликапролактама напоминают кружево, их место после трансплантации уже через несколько лет займут собственные хрящевые ткани человека.

Затем поликапролактам насыщают созданным из клеток пациента гелем, охлажденным до -18 градусов Цельсия — таким образом клетки, по словам ученых, не повреждаются, они «живы и счастливы».

Image caption

Печать испытательного образца почки на биопринтере

Чтобы конструкция из полимера и геля приобрела форму и превратилась во что-то более прочное, в лаборатории используют ультрафиолет — он не повреждает клетки.

Будущий имплантат печатается 4-5 часов, затем окончательно формируется и вставляется под эпидермис.

Выращивать можно и кожу: первыми в ранних испытаниях Аталы принимали участие пострадавшие в пожарах дети — после «распечатки» кожи ученые еще несколько лет наблюдали за пациентами. Новая кожа не трескалась, не лопалась и росла вместе с детьми.

Самая сложная работа, по словам ученого, — раны лица: мало просто натянуть кожу, нужно точно рассчитать геометрию, выверить припухлости, строение костей, и понять, как после этого будет выглядеть человек.

Кроме кожи и ушей, Атала может «напечатать» кости челюстей, вырастить кровеносные сосуды и клетки некоторых органов — печени, почек, легких.

Эту технологию особенно ценят онкологи: на основе клеток пациентов можно воссоздать реакцию организма на разные виды химиотерапии и наблюдать за реакцией на тот или иной тип лечения в лабораторных условиях, а не на живом человеке.

А вот печень, почки, легкие и сердце — все еще на стадии испытаний. Атала говорит, что вырастил их в миниатюре, но создание органов из различных тканей и в настоящую величину требует множества дополнительных исследований.

Зато, по его словам, в лаборатории вырастили клетки и создали вагину для девочки, родившейся несколько лет назад с врожденной деформацией половых органов — с момента пересадки прошло уже несколько лет.

Image caption

Основа для ушного имплантата из поликапролактама, отпечатанная на биопринтере

Атала улыбается и добавляет: над созданием работоспособного пениса его команда тоже работает. Это исследования продолжаются уже несколько лет, и больше всего хлопот ученым доставляют сложная структура тканей и специфическая чувствительность самого органа.

В числе прочих над этим в лабораторных условиях трудится россиянин, аспирант Первого Московского государственного медицинского университета (МГМУ) имени Сеченова Игорь Васютин. Он — клеточный биолог, правая рука Аталы.

В США Васютин около года — приехал по обмену. О поведении стволовых клеток он готов рассуждать часами, но становится менее многословен, когда речь заходит о российской науке.

В альма-матер Васютина до массовой регенерации человеческих органов не дошли и пока тренируются на животных: местные ученые «распечатали» на 3D-принтере щитовидную железу мыши.

Исследованием человеческих органов там, впрочем, тоже занимаются. По словам руководителя Института регенеративной медицины при МГМУ Дениса Бутнара, несколько лет назад в Институте воссоздали специальную инженерную конструкцию слизистой оболочки щеки. Она отлично функционировала первые полгода, но впоследствии пришлось сделать повторную операцию.

Image caption

Испытательный образец ушного имплантата под воздействием ультрафиолета

В России, впрочем, на протяжении нескольких последних лет практиковал итальянский хирург-трансплатолог Паоло Маккиарини — человек, первым в истории сделавший операцию по пересадке синтетического органа — пластиковой трубки, заменившей пациенту трахею.

  • Паоло Маккиарини: взлет и падение знаменитого хирурга

Однако семь из девяти его пациентов умерли, а имплантированные оставшимся двоим дыхательные трубки впоследствии пришлось заменить донорскими.

На него было заведено несколько уголовных дел, в том числе по обвинениям в давлении на пациентов и мошенничестве, а ведущие медики мира называли операции Маккиарини «этическим Чернобылем».

Заменят ли напечатанные органы доноров?

В зените своей карьеры Маккиарини утверждал, что перед человечеством открывается новая перспектива: можно «распечатать» на принтере любой человеческий орган, создать из него инженерную конструкцию, обогащенную стволовыми клетками пациента, и получить идеальный протез.

Как бы там ни было, сложные человеческие органы — печень, почки, сердце, легкие — пока не удалось вырастить ни одному регенеративному хирургу.

Биопечать так называемых простых органов, впрочем, уже доступна в США, Швеции, Испании и Израиле — на уровне клинических испытаний и специальных программ.

Американское правительство активно инвестирует в подобные программы — кроме Wake Forest, сотрудничающей с Пентагоном, на воссоздание работы печени, сердца и легких значительные суммы получает и Массачусетский технологический институт.

Image caption

Тест нанесения кожи на обожженную рану

По мнению профессора Хорхе Ракелы, гастроэнтеролога в исследовательском центре Mayo Clinic, «биопечать — одна из самых потрясающих отраслей современной медицины, за ней огромный потенциал, и переломный момент самых важных открытий уже близок».

Между тем Пит Басильер, руководитель отдела по научно-исследовательской работе аналитической компании Gartner, настаивает: технологии развиваются намного быстрее, чем понимание тех последствий, которые может повлечь за собой 3D-печать.

Подобные разработки, по словам Басильера, даже созданные с самыми благими намерениями, рождают набор вопросов: что случится, когда будут созданы «улучшенные» органы, основой которых станут не только человеческие клетки — будут ли они обладать «суперспособностями»? Будет ли создан контролирующий орган, следящий за их производством? Кто будет проверять качество этих органов?

Согласно докладу Национальной медицинской библиотеки США, в очередь на пересадку органов каждый год встают больше 150 тыс. американцев. Донорские органы получит только 18% из них; каждый день в Штатах, так и не дождавшись трансплантации, умирают 25 человек. Пересадка органов и последующая реабилитация только в 2012 году обошлись страховым компаниям и пациентам в 300 млрд долларов.

  • Трехмерный принтер помог велосипедисту, лишившемуся челюсти
  • Генетически модифицированные свиньи — доноры органов для человека?
  • Первый в мире ребенок, которому пересадили обе руки, играет в бейсбол

При этом большинство американцев — потенциальные доноры: при получении водительских прав они добровольно отвечают на вопрос о том, согласны ли поделиться своими органами в случае автокатастрофы или другого опасного инцидента. В случае согласия в углу документа появляется маленькое «сердечко» и слово «донор».

Такое красуется и на водительском удостоверении профессора Аталы — несмотря на все свои достижения и веру в «органы печати», он готов поделиться с окружающими своими.

Ни сам профессор, ни его подчиненные не скрывают — «напечатать» органы для тысяч нуждающихся в пересадке прямо сейчас наука пока не в состоянии. По его словам, на то, чтобы на уровне массового рынка заменить донорские органы выращенными, уйдет несколько десятков лет.

Работа Аталы и других специалистов в области регенеративной медицины остается скорее испытательной, чем массовой, и все еще «заточенной» под каждого отдельного пациента.

Источник: bbc.com

Похожие записи